How a Wastewater Treatment Plant Works

Tags: 

Wastewater treatment plant

Water purification inside a waste water treatment plant is a process of removing undesirable chemicals, materials, and biological contaminants from raw water using different water treatment processes. The goal of waste water treatment is to produce clean water fit for a specific purpose.

Waste water treatment systems

In general the methods used for waste water treatment systems include physical processes such as filtration and sedimentation, biological processes such as slow sand filters or activated sludge, chemical processes such as flocculation and chlorination and the use of electromagnetic radiation such as ultraviolet light.

The water purification process may reduce the concentration of particulate matter including suspended particles, parasites, bacteria, algae, viruses, fungi; and a range of dissolved and particulate material derived from the surfaces that water may have made contact with after falling as rain.

The standards for clean drinking water are typically set by governments or by international standards. These standards will typically set minimum and maximum concentrations of contaminants for the use that is to be made of the water.

Waste water treatment process

Screening

Wastewater entering the treatment plant includes items like wood, rocks, and even dead animals. Unless they are removed, they could cause problems later in the treatment process. Most of these materials are sent to a landfill.

Pumping

The wastewater system relies on the force of gravity to move sewage from your home to the treatment plant. So waste water-treatment plants are located on low ground, often near a river into which treated water can be released. If the plant is built above the ground level, the waste water has to be pumped up to the aeration tanks (item 3). From here on, gravity takes over to move the wastewater through the treatment process.

Aerating

One of the first steps that a water treatment facility can do is to just shake up the sewage and expose it to air. This causes some of the dissolved gases (such as hydrogen sulfide, which smells like rotten eggs) that taste and smell bad to be released from the water. Wastewater enters a series of long, parallel concrete tanks. Each tank is divided into two sections. In the first section, air is pumped through the water.

As organic matter decays, it uses up oxygen. Aeration replenishes the oxygen. Bubbling oxygen through the water also keeps the organic material suspended while it forces 'grit' (coffeegrounds, sand and other small, dense particles) to settle out. Grit is pumped out of the tanks and taken to landfills.

Removing sludge

Wastewater then enters the second section or sedimentation tanks. Here, the sludge (the organic portion of the sewage) settles out of the wastewater and is pumped out of the tanks. Some of the water is removed in a step called thickening and then the sludge is processed in large tanks called digesters.

Removing scum

As sludge is settling to the bottom of the sedimentation tanks, lighter materials are floating to the surface. This 'scum' includes grease, oils, plastics, and soap. Slow-moving rakes skim the scum off the surface of the wastewater. Scum is thickened and pumped to the digesters along with the sludge.

Many cities also use filtration in sewage treatment. After the solids are removed, the liquid sewage is filtered through a substance, usually sand, by the action of gravity. This method gets rid of almost all bacteria, reduces turbidity and color, removes odors, reduces the amount of iron, and removes most other solid particles that remained in the water. Water is sometimes filtered through carbon particles, which removes organic particles. This method is used in some homes, too.

Killing bacteria

Finally, the wastewater flows into a 'chlorine contact' tank, where the chemical chlorine is added to kill bacteria, which could pose a health risk, just as is done in swimming pools. The chlorine is mostly eliminated as the bacteria are destroyed, but sometimes it must be neutralized by adding other chemicals. This protects fish and other marine organisms, which can be harmed by the smallest amounts of chlorine.

The treated water (called effluent) is then discharged to a local river or the ocean

Other water purification techniques

Other popular methods for purifying water, especially for local private supplies are listed below. In some countries some of these methods are also used for large scale municipal supplies. Particularly important are distillation (de-salination of seawater) and reverse osmosis.

Boiling

Water is heated hot enough and long enough to inactivate or kill micro-organisms that normally live in water at room temperature. Near sea level, a vigorous rolling boil for at least one minute is sufficient. At high altitudes (greater than two kilometres or 5000 feet) three minutes is recommended.[18] In areas where the water is "hard" (that is, containing significant dissolved calcium salts), boiling decomposes the bicarbonate ions, resulting in partial precipitation as calcium carbonate. This is the "fur" that builds up on kettle elements, etc., in hard water areas. With the exception of calcium, boiling does not remove solutes of higher boiling point than water and in fact increases their concentration (due to some water being lost as vapour). Boiling does not leave a residual disinfectant in the water. Therefore, water that has been boiled and then stored for any length of time may have acquired new pathogens.

Granular Activated Carbon filtering

Granular Activated Carbon filtering is a form of activated carbon with a high surface area, adsorbs many compounds including many toxic compounds. Water passing through activated carbon is commonly used in municipal regions with organic contamination, taste or odors. Many household water filters and fish tanks use activated carbon filters to further purify the water. Household filters for drinking water sometimes contain silver as metallic silver nanoparticle. if water is held in the carbon block for longer period, microorganisms can grow inside which results in fouling and contamination. Silver nanoparticles are excellent anti-bacterial material and they can decompose toxic halo-organic compounds such as pesticides into non-toxic organic products[citation needed].

Distillation

Distillation involves boiling the water to produce water vapour. The vapour contacts a cool surface where it condenses as a liquid. Because the solutes are not normally vaporised, they remain in the boiling solution. Even distillation does not completely purify water, because of contaminants with similar boiling points and droplets of unvapourised liquid carried with the steam. However, 99.9% pure water can be obtained by distillation.

Reverse osmosis

Mechanical pressure is applied to an impure solution to force pure water through a semi-permeable membrane. Reverse osmosis is theoretically the most thorough method of large scale water purification available, although perfect semi-permeable membranes are difficult to create. Unless membranes are well-maintained, algae and other life forms can colonize the membranes.

Iron

The use of iron in removing arsenic from water.

Direct contact membrane distillation

Direct contact membrane distillation (DCMD). Applicable to desalination. Heated seawater is passed along the surface of a hydrophobic polymer membrane. Evaporated water passes from the hot side through pores in the membrane into a stream of cold pure water on the other side. The difference in vapour pressure between the hot and cold side helps to push water molecules through.

Gas hydrate crystals centrifuge method

If carbon dioxide gas is mixed with contaminated water at high pressure and low temperature, gas hydrate crystals will contain only clean water. This is because the water molecules bind to the gas molecules at molecular level. The contaminated water is in liquid form. A centrifuge may be used to separate the crystals and the concentrated contaminated water.

Related articles: 

Add new comment

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
By submitting this form, you accept the Mollom privacy policy.